
Thermally switching between perfect absorber and asymmetric transmission in vanadium dioxide-assisted metamaterials
Author(s) -
YongXiang Ren,
Tianle Zhou,
Chun Jiang,
Bin Tang
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.418273
Subject(s) - materials science , metamaterial , optoelectronics , absorption (acoustics) , optical switch , optics , plasmon , coupled mode theory , transmittance , metamaterial absorber , refractive index , physics , tunable metamaterials , composite material
In this paper, we propose a switchable bi-functional metamaterial device based on a hybrid gold-vanadium dioxide (VO 2 ) nanostructure. Utilizing the property of a metal-to-insulator transition in VO 2 , perfect absorption and asymmetric transmission (AT) can be thermally switched for circularly polarized light in the near-infrared region. When VO 2 is in the metallic state, the designed metamaterial device behaves as a chiral-selective plasmonic perfect absorber, which can result in an optical circular dichroism (CD) response with a maximum value ∼ 0.7. When VO 2 is in the insulating state, the proposed metamaterial device exhibits a dual-band AT effect. The combined hybridization model and electromagnetic field distributions are presented to explain the physical mechanisms of chiral-selective perfect absorption and AT effect, respectively. The influences of structure parameters on CD response and AT effect are also discussed. Moreover, the proposed switchable bi-functional device is robust against the incident angle for obtaining perfect absorption and strong CD response as well as the AT effect. Our work may provide a promising path for the development of multifunctional optoelectronic devices, such as thermal emitters, optical modulators, CD spectroscopy, optical isolator, etc.