z-logo
open-access-imgOpen Access
Watt-level and sub-100-fs self-starting mode-locked 2.4-µm Cr:ZnS oscillator enabled by GaSb-SESAMs
Author(s) -
Ajanta Barh,
Jonas Heidrich,
B. O. Alaydin,
Marco Gaulke,
M. Golling,
C. R. Phillips,
U. Keller
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.416894
Subject(s) - laser , materials science , optoelectronics , optics , mode locking , ultrashort pulse , femtosecond , saturable absorption , wavelength , fiber laser , physics
Femtosecond lasers with high peak power at wavelengths above 2 µm are of high interest for generating mid-infrared (mid-IR) broadband coherent light for spectroscopic applications. Cr 2+ -doped ZnS/ZnSe solid-state lasers are uniquely suited since they provide an ultra-broad bandwidth in combination with watt-level average power. To date, the semiconductor saturable absorber mirror (SESAM) mode-locked Cr:ZnS(e) lasers have been severely limited in power due to the lack of suitable 2.4-µm SESAMs. For the first time, we develop novel high-performance 2.4-µm type-I and type-II SESAMs, and thereby obtain state-of-the-art mode-locking performance. The type-I InGaSb/GaSb SESAM demonstrates a low non-saturable loss (0.8%) and an ultrafast recovery time (1.9 ps). By incorporating this SESAM in a 250-MHz Cr:ZnS laser cavity, we demonstrate fundamental mode-locking at 2.37 µm with 0.8 W average power and 79-fs pulse duration. This corresponds to a peak power of 39 kW, which is the highest so far for any saturable absorber mode-locked Cr:ZnS(e) oscillator. In the same laser cavity, we could also generate 120-fs pulses at a record high average power of 1 W. A comparable laser performance is achieved using type-II InAs/GaSb SESAM as well. These results pave the way towards a new class of high-power femtosecond SESAM mode-locked oscillators operating directly above 2-µm wavelength.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom