
Photon storage and routing in quantum dots with spin-orbit coupling
Author(s) -
Chong Shou,
Qi Zhang,
Wei Luo,
Guoxiang Huang
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.416791
Subject(s) - electromagnetically induced transparency , photon , photonics , quantum information science , quantum information , physics , quantum network , quantum dot , optoelectronics , quantum channel , quantum optics , quantum sensor , quantum computer , routing (electronic design automation) , computer science , optics , quantum , quantum mechanics , quantum entanglement , computer network
As an essential element for quantum information processing and quantum communication, efficient quantum memory based on solid-state platforms is imperative for practical applications but remains a challenge. Here we propose a scheme to realize a highly efficient and controllable storage and routing of single photons based on quantum dots (QDs) with a Rashba spin-orbit coupling (SOC). We show that the SOC in the QDs can provide a flexible built-up of electromagnetically induced transparency (EIT) for single-photon propagation, and storage, retrieval, as well as routing of single-photon wavepackets can also be implemented through the EIT. Moreover, we demonstrate that the propagation loss of the single-photon wavepackets in the QDs may be largely suppressed by means of a weak microwave field, by which the storage and routing of the single photons can be made to have high efficiency and fidelity. Our research opens a route for designs of advanced solid-state devices promising for applications in photonic quantum-information processing and transmission based on the QDs with SOC.