z-logo
open-access-imgOpen Access
Bi-directional gated recurrent unit neural network based nonlinear equalizer for coherent optical communication system
Author(s) -
Xinyu Liu,
Yongjun Wang,
Xishuo Wang,
Hui Xu,
Chao Li,
Xiangjun Xin
Publication year - 2021
Publication title -
optics express
Language(s) - Danish
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.416672
Subject(s) - quadrature amplitude modulation , forward error correction , qam , computer science , optical communication , optics , artificial neural network , dbm , electronic engineering , modulation (music) , transmission (telecommunications) , bit error rate , physics , telecommunications , bandwidth (computing) , engineering , artificial intelligence , decoding methods , amplifier , acoustics
We propose a bi-directional gated recurrent unit neural network based nonlinear equalizer (bi-GRU NLE) for coherent optical communication systems. The performance of bi-GRU NLE has been experimentally demonstrated in a 120 Gb/s 64-quadrature amplitude modulation (64-QAM) coherent optical communication system with a transmission distance of 375 km. Experimental results show that the proposed bi-GRU NLE can significantly mitigate nonlinear distortions. The Q-factors can exceed the hard-decision forward error correction (HD-FEC) limit of 8.52 dB with the aid of bi-GRU NLE, when the launched optical power is in the range of -3 dBm to 3 dBm. In addition, when the launched optical power is in the range of 0 dBm to 2 dBm, the Q-factor performances of the bi-GRU NLE and bi-directional long short-term memory neural network based nonlinear equalizer (bi-LSTM NLE) are similar, while the number of parameters of bi-GRU NLE is about 20.2% less than that of bi-LSTM NLE, the average training time of bi-GRU NLE is shorter than that of bi-LSTM NLE, the number of multiplications required for the bi-GRU NLE to equalize per symbol is about 24.5% less than that for bi-LSTM NLE.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom