z-logo
open-access-imgOpen Access
Bandwidth extension and conversion efficiency improvements beyond phase matching limitations using cavity-enhanced OPCPA
Author(s) -
Aleem Siddiqui,
Kyung-Han Hong,
Jeffrey Moses,
Franz X. Kärtner
Publication year - 2021
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.415765
Subject(s) - optics , energy conversion efficiency , bandwidth (computing) , optical parametric amplifier , materials science , optical amplifier , physics , ultrashort pulse , laser , optoelectronics , telecommunications , computer science
The conversion efficiency and phase matching bandwidth of ultrafast optical parametric amplification (OPA) are constrained by the dispersion and nonlinear coefficient of the employed crystal as well as pulse shaping effects. In our work we show that an enhancement cavity resonant with the pump seeded at the full repetition rate of the pump laser can automatically reshape the small-signal gain in optical parametric chirped-pulse amplification (OPCPA) to achieve close-to-optimal operation. This new method termed cavity-enhanced OPCPA or C-OPCPA significantly increases both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. The goal in C-OPCPA is to arrive at a condition of impedance matching at all temporal coordinates, such that, in the absence of linear losses, all the incident pump power is dissipated in the nonlinear loss element, i.e., converted to signal and idler. The use of a low finesse enhancement cavity resonant with a low average power (<1W) and a high repetition rate (78MHz) pump source is shown to achieve more than 50% conversion efficiency into signal and idler from the coupled pump in an optical parametric process, whereas an equivalent amount of pump power in a single-pass configuration leads to negligible conversion. Additionally, the gain bandwidth is extended by a factor of 3-4 beyond the phase-matching limit. Our empirical observations are corroborated by a numerical analysis of depletion optimizing the single-pass case, which assesses the underlying impedance matching that is responsible for the observed performance improvements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here