z-logo
open-access-imgOpen Access
Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction
Author(s) -
Pengfei Li,
Rujiang Li,
ChaoQing Dai
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.415028
Subject(s) - antisymmetric relation , bifurcation , soliton , physics , symmetry (geometry) , symmetry breaking , nonlinear system , self focusing , saturable absorption , pitchfork bifurcation , classical mechanics , bifurcation theory , quantum mechanics , mathematics , mathematical physics , fiber laser , geometry , laser , laser beams
We study existence, bifurcation and stability of two-dimensional optical solitons in the framework of fractional nonlinear Schrödinger equation, characterized by its Lévy index, with self-focusing and self-defocusing saturable nonlinearities. We demonstrate that the fractional diffraction system with different Lévy indexes, combined with saturable nonlinearity, supports two-dimensional symmetric, antisymmetric and asymmetric solitons, where the asymmetric solitons emerge by way of symmetry breaking bifurcation. Different scenarios of bifurcations emerge with the change of stability: the branches of asymmetric solitons split off the branches of unstable symmetric solitons with the increase of soliton power and form a supercritical type bifurcation for self-focusing saturable nonlinearity; the branches of asymmetric solitons bifurcates from the branches of unstable antisymmetric solitons for self-defocusing saturable nonlinearity, featuring a convex shape of the bifurcation loops: an antisymmetric soliton loses its stability via a supercritical bifurcation, which is followed by a reverse bifurcation that restores the stability of the symmetric soliton. Furthermore, we found a scheme of restoration or destruction the symmetry of the antisymmetric solitons by controlling the fractional diffraction in the case of self-defocusing saturable nonlinearity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom