z-logo
open-access-imgOpen Access
Analytical model for the perceived retinal image formation of 3D display systems
Author(s) -
Mohan Xu,
Hekun Huang,
Hong Hua
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.408585
Subject(s) - computer science , wavefront , adaptive optics , stereo display , computer vision , optics , process (computing) , compensation (psychology) , human eye , artificial intelligence , schematic , integral imaging , wavefront sensor , image formation , computer graphics (images) , image (mathematics) , physics , psychology , electronic engineering , psychoanalysis , engineering , operating system
The optical design process of conventional stereoscope-type head mounted displays for virtual and augmented reality applications typically neglects the inherent aberrations of the eye optics or refractive errors of a viewer, which misses the opportunity of producing personal devices for optimal visual experiences. Although a few research efforts have been made to simulate the retinal image formation process for some of the emerging 3D display systems such as light field displays that require modeling the eye optics to complete the image formation process, the existing works generally are specific for one type of display methods, unable to provide a generalized framework for different display methods for the benefit of comparison, and often require the use of at least two different software platforms for implementation which is challenging in handling massive data and implementing compensation of wavefront aberrations induced by display engine or eye refractive errors. To overcome those limits, we present a generalized analytical model for accurately simulating the visual responses such as retinal PSF, MTF, and image formation of different types of 2D and 3D display systems. This analytical model can accurately simulate the retinal responses when viewing a given display system, accounting for the residual eye aberrations of schematic eye models that match with the statistical clinical measurements, eye accommodative change as required, the effects of different eye refractive errors specific to viewers, and the effects of various wavefront aberrations inherited from a display engine. We further describe the numerical implementation of this analytical model for simulating the perceived retinal image with different types of HMD systems in a single computational platform. Finally, with a test setup, we numerically demonstrated the application of this analytical model in the simulation of the perceived retinal image, accommodative response and in the investigation of the eye refractive error impacts on the perceived retinal image based on the multifocal plane display, integral imaging based light field display, computational multilayer light field display, as well as the stereoscope and natural viewing for comparison.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here