
Improvement of the signal-to-noise ratio in a low power self-mixing interferometer using a coupled interferometric effect
Author(s) -
Carlos Yáñez Canal,
Santiago Royo
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.405997
Subject(s) - interferometry , optics , physics , laser , signal (programming language) , astronomical interferometer , mixing (physics) , laser diode , photodiode , fabry–pérot interferometer , computer science , quantum mechanics , programming language
We present experimental results of a low-emission self-mixing interferometer that uses a coupled interferometric effect to improve the signal produced by a vibrating target. This method is intended to be useful in applications where the target is prone to be damaged by high-intensity laser sources. The beam of a Fabry-Perot laser diode is split and ∼21% of the original emission is used to measure the harmonic micro-displacements of the target using the self-mixing effect. A portion of the residual beam, which also carries the interferometric information related to the target displacement, is reinjected back into the laser cavity by means of a fixed reflector, causing a second interferometric phenomenon that improves the signal-to-noise ratio of the measurement by up to ∼13 dB. A theoretical description of the phenomena is also proposed. Further, we apply this technique to the two most common self-mixing sensing schemes: internal photodiode and junction voltage. The reported results show good agreement with theory and prove the capability of the method to enhance the SNR in SMI schemes.