
Multiple Dirac points by high-order photonic bands in plasmonic-dielectric superlattices
Author(s) -
Zhen Zhen Liu,
Guochao Wei,
Dasen Zhang,
Jun Jun Xiao
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.405422
Subject(s) - plasmon , brillouin zone , metamaterial , photonics , dielectric , dirac (video compression format) , superlattice , physics , optics , optoelectronics , materials science , condensed matter physics , quantum mechanics , neutrino
The emergence of Dirac points (DPs) characterizes the topological phase transition and the gapless interface states in composite metal-dielectric metamaterials. In this work, we study a kind of compound plasmonic-dielectric periodic structure (PDPS) which sustains both plasmonic modes and multiple photonic modes. The structure has primitive cell consisting of four layers made from triple constituent components. Due to the generalized Su-Schrieffer-Heeger, DPs can emerge at the Brillouin zone center. More specifically, in weak plasmonic-photonic mode interaction regime, multiple DPs would emerge at the Brillouin zone center and edge due to the band folding, from the perspective of general effective medium. From the rigorous field analysis, the origin of these DPs is clearly demonstrated. These interleaved DPs behave as the intermediate transitions of the surface impedance for the PDPS and raise fully spanned topological interface states originated from 0 to 2nd-order photonic bands in the PDPS. The cases of combining our PDPS with either a plasmonic or dielectric homogenous medium are presented.