
Efficient light extraction in subwavelength GaAs/AlGaAs nanopillars for nanoscale light-emitting devices
Author(s) -
Bruno Romeira,
Jérôme Borme,
Hélder Fonseca,
J. Gaspar,
Jana B. Nieder
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.402887
Subject(s) - nanopillar , materials science , optoelectronics , light emitting diode , quantum efficiency , optics , total internal reflection , photoluminescence , photodetector , semiconductor , diode , nanostructure , nanotechnology , physics
This work reports on high extraction efficiency in subwavelength GaAs/AlGaAs semiconductor nanopillars. We achieve up to 37-fold enhancement of the photoluminescence (PL) intensity from sub-micrometer (sub-µm) pillars without requiring back reflectors, high-Q dielectric cavities, nor large 2D arrays or plasmonic effects. This is a result of a large extraction efficiency for nanopillars <500 nm width, estimated in the range of 33-57%, which is much larger than the typical low efficiency (∼2%) of micrometer pillars limited by total internal reflection. Time-resolved PL measurements allow us to estimate the nonradiative surface recombination of fabricated pillars. We conclusively show that vertical-emitting nanopillar-based LEDs, in the best case scenario of both reduced surface recombination and efficient light out-coupling, have the potential to achieve notable large external quantum efficiency (∼45%), whereas the efficiency of large µm-pillar planar LEDs, without further methods, saturates at ∼2%. These results offer a versatile method of light management in nanostructures with prospects to improve the performance of optoelectronic devices including nanoscale LEDs, nanolasers, single photon sources, photodetectors, and solar cells.