z-logo
open-access-imgOpen Access
High sensitivity fiber-optic Michelson interferometric low-frequency acoustic sensor based on a gold diaphragm
Author(s) -
Pingjie Fan,
Wei Yan,
Ping Lü,
Wanjin Zhang,
Wei Zhang,
Xin Fu,
Jiangshan Zhang
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.402099
Subject(s) - optics , materials science , diaphragm (acoustics) , fiber optic sensor , interferometry , sensitivity (control systems) , optical fiber , michelson interferometer , demodulation , vibration , acoustics , physics , telecommunications , channel (broadcasting) , electronic engineering , computer science , engineering
A Michelson interferometric fiber-optic acoustic sensor based on a large-area gold diaphragm is proposed in this paper. The Michelson interferometer (MI) based on 3×3 coupler is comprised of two beams that reflected from the gold diaphragm and a cleaved fiber end face. Thickness and diameter of the gold diaphragm are 300 nm and 2.5 mm, respectively. Based on the phase difference between each output port of the 3×3 fiber coupler, an ellipse fitting differential cross multiplication (EF-DCM) interrogation process is induced for phase demodulation, which can overcome the phase distortion caused by property degradation of 3×3 coupler. Experimental results show that the sensor has a phase sensitivity of about -130.6 dB re 1 rad/μPa@100 Hz. A flat response range between 0.8 to 250 Hz is realized with the sensitivity fluctuation below 0.7 dB. Besides, the signal-to-noise ratio (SNR) and minimal detectable pressure (MDP) of the sensor are 57.9 dB and 10.2 mPa/Hz 1/2 at 5 Hz. The proposed sensor exhibits superiorities of compact size, high sensitivity, flat low-frequency response and ease of mass production, which gives the sensor great potential for low-frequency acoustic sensing and photo-acoustic spectroscopy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom