
Inversion probability enhancement of all-fiber CDWL by noise modeling and robust fitting
Author(s) -
Tianwen Wei,
Haiyun Xia,
Yuqi Wu,
Jinlong Yuan,
Chong Wang,
Xiankang Dou
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.401054
Subject(s) - optics , detector , physics , lidar , noise power , wind speed , sine wave , noise spectral density , spectral density , acoustics , computer science , noise figure , power (physics) , telecommunications , amplifier , optoelectronics , cmos , quantum mechanics , voltage , meteorology
Accurate power spectrum analysis of weak backscattered signals are the primary constraint in long-distance coherent Doppler wind lidar (CDWL) applications. To study the atmospheric boundary layer, an all-fiber CDWL with 300µJ pulse energy is developed. In principle, the coherent detection method can approach the quantum limit sensitivity if the noise in the photodetector output is dominated by the shot noise of the local oscillator. In practice, however, abnormal power spectra occur randomly, resulting in error estimation and low inversion probability. This phenomenon is theoretically analyzed and shown to be due to the leakage of a time-varying DC noise of the balanced detector. Thus, a correction algorithm with accurate noise modeling is proposed and demonstrated. The accuracy of radial velocity, carrier-to-noise ratio (CNR), and spectral width are improved. In wind profiling process, a robust sine-wave fitting algorithm with data quality control is adopted in the velocity-azimuth display (VAD) scanning detection. Finally, in 5-day continuous wind detection, the inversion probability is tremendously enhanced. As an example, it is increased from 8.6% to 52.1% at the height of 4 km.