
Method for 3D tracking behaviors of interplaying bacteria individuals
Author(s) -
Gancheng Wang,
Gui Huang,
Xiangjun Gong,
Guangzhao Zhang
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.401032
Subject(s) - digital holographic microscopy , tracking (education) , trajectory , optics , bacteria , computer vision , computer science , microscopy , physics , artificial intelligence , biological system , biology , psychology , pedagogy , astronomy , genetics
Behaviors of platonic bacteria individuals are profoundly influenced by their interplay. However, probing such interplay still remains a challenge since identification and tracking of bacterial individuals becomes difficult as they come close and interact with each other. Herein, we report 3D tracking of the motions of multiple bacteria by using digital holographic microscopy (DHM), where the subtle 3D behaviors can be characterized as bacteria approach and run away from each other. An algorithm was developed to identify and recover the gap between 3D trajectory segments raising by the interruption from other bacteria through lateral image recognition and axial loalization utilizing cost function. We value the performance of the algorithm in terms of the statistics in trajectory length and correct rate. The study clearly shows how the interplaying Escherichia coli alter their motions.