z-logo
open-access-imgOpen Access
N x N x Mλ electro-optical nanobeam wavelength-multiplexed cross-connect switches using push-push addressing
Author(s) -
Richard A. Soref
Publication year - 2020
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.400351
Subject(s) - silicon on insulator , optics , optical switch , crossbar switch , wavelength division multiplexing , multiplexing , interferometry , physics , optoelectronics , wavelength , astronomical interferometer , materials science , silicon , telecommunications , computer science
In this theoretical work, we design elemental and higher-order wavelength-division-multiplexed cross-connects (WXCs): nonblocking space-and-wavelength routing switches to be constructed in a monolithic, industry-standard, silicon-on-insulator (SOI) chip operating at a center wavelength of 1550 nm. Each multi-spectral multi-crossbar 2×2 x Mλ "element" of the network switch is an M-fold cascade connection of λ-diverse SOI Mach-Zehnder interferometers (MZIs), each of which utilizes a nanobeam cavity in each MZI arm. Within the element, each MZI has an electro-optically (EO) controlled local PN-junction "depleter" embedded in each cavity. The cavity voltage commands are (0,0) or (V,V) where V is a "small" reverse bias. Each element can be reconfigured in 2 to 5 ps, depending on Q, with few-fJ/bit switching energy. For the M = 3 case, a compact 6-element 4×4×3λ WXC is presented. In addition, compact new designs are given for a 12-element 8×8×3λ WXC and for 16×16×8λ WXCs employing either 56 or 72 elements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here