z-logo
open-access-imgOpen Access
Coscinodiscus diatom inspired bi-layered photonic structures with near-perfect absorptance accompanied by tunable absorption characteristics
Author(s) -
Sameia Zaman,
Mohammad Muntasir Hassan,
Muhammad Hasanuzzaman,
Md Zunaid Baten
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.399505
Subject(s) - absorptance , materials science , photonics , wavelength , optics , photonic crystal , dielectric , absorption (acoustics) , attenuation coefficient , polarization (electrochemistry) , optoelectronics , thin film , finite difference time domain method , physics , nanotechnology , reflectivity , chemistry , composite material
Inspired by the morphology of Coscinodiscus species diatom, bi-layered photonic structures comprised of dielectric-filled nano-holes of varying diameters have been designed and analyzed to enhance and tune absorption characteristics of GaAs-based thin-film photonic devices. Finite difference time domain-based numerical analysis and effective medium approximation based theoretical calculations show that by adjusting diameter and areal density of the nano-holes of the two layers, the peak absorption wavelength can be tuned over a wide spectral range, while attaining a maximum peak-absorptance value of about 97% and a maximum absorption bandwidth of ∼ 190 nm. The maximum enhancement factor of the bi-layered structure is about 11% higher than the value obtained for its equivalent single-layered counterpart over the near-ultraviolet to visible regime of the spectra. High absorptance over a wide-angle for TM polarization and tunable angle-dependent absorption characteristics for TE polarization are also obtained for the proposed ultra-thin absorbers. It has been shown that instead of having misaligned pore-centers as in Coscinodiscus species diatoms, a bi-layered structure designed with layers of identical lattice constant offers significant flexibility in terms of design and practical realization of thin-film photonic devices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom