z-logo
open-access-imgOpen Access
Ultra-low phase noise microwave generation with a free-running monolithic femtosecond laser
Author(s) -
Manoj Kalubovilage,
Mamoru Endo,
T. R. Schibli
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.399425
Subject(s) - phase noise , dbc , noise floor , optics , relative intensity noise , microwave , materials science , noise (video) , optoelectronics , laser , photonics , femtosecond , noise generator , physics , noise reduction , noise measurement , noise figure , semiconductor laser theory , acoustics , computer science , amplifier , cmos , quantum mechanics , artificial intelligence , image (mathematics)
Phase noise performance of photonic microwave systems, such as optical frequency division (OFD), can surpass state-of-the-art electronic oscillators by several orders of magnitude. However, high-finesse cavities and active stabilization requirements in OFD systems make them complicated and potentially unfit for field deployment. Ultra-low noise mode-locked monolithic lasers offer a viable alternative for a compact and simple photonic microwave system. Here we present a free-running monolithic laser-based 8 GHz microwave generation with ultra-low phase noise performance comparable to laboratory OFD systems. The measured noise performance reached -130 dBc/Hz at 100 Hz, - 150 dBc/Hz at 1 kHz, and -167 dBc/Hz at 10 kHz offsets from the 8-GHz carrier. We also report a sub-Poissonian noise floor of -179 dBc/Hz above 30 kHz (timing noise floor of 32 zs Hz -1/2 ), which is ∼12 dB below the noise floor of time-invariant shot noise. In addition to the low phase noise, the system is compact, with a power consumption of less than 9 W, and offers excellent potential for mobile or space-borne applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom