z-logo
open-access-imgOpen Access
Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared
Author(s) -
Jing Liu,
Wen-Zhuang Ma,
Wei Chen,
Gao-Xiang Yu,
YuShan Chen,
Xu-Chu Deng,
Chao-Yuh Yang
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.399198
Subject(s) - materials science , metamaterial absorber , molar absorptivity , optics , surface plasmon resonance , magnesium fluoride , metamaterial , optoelectronics , wavelength , ray , infrared , absorption (acoustics) , brewster's angle , surface plasmon , fresnel equations , polarization (electrochemistry) , wideband , resonance (particle physics) , refractive index , plasmon , layer (electronics) , physics , nanoparticle , chemistry , tunable metamaterials , brewster , particle physics , composite material , nanotechnology
In this study, we designed a novel ultra-wideband (UWB) absorber and numerically analyzed it to demonstrate that its light absorptivity was greater than 90% in the wavelength range of visible light and near-infrared (405-1505 nm). The structure of proposed novel UWB absorber consisted of four layers of films, including silica, titanium, magnesium fluoride, and aluminium, and the upper silica and titanium layers had rectangular cubes in them. For that, the excitations of propagating surface plasmon resonance (PSPR), local surface plasmon resonance (LSPR), and the resonance of Fabry-Perot (FP) cavity were generated at the same time and combined to reach the effect of perfect absorption and ultra-wideband. The proposed absorber had an average absorptivity of 95.14% in the wavelength range of 405 ∼ 1505 nm when the light was under normal incidence. In addition, the UWB absorber was large incident angle insensitive and polarization-independent. The absorber proposed in the paper had great prospects in the fields of thermal electronic equipment, solar power generation, and perfect cloaking.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here