
Effect of light scattering on upconversion photoluminescence quantum yield in microscale-to-nanoscale materials
Author(s) -
Callum M. S. Jones,
N.A. Panov,
Artiom Skripka,
J. Gibbons,
Fabian Hesse,
JanWillem G. Bos,
Xiangfu Wang,
Fiorenzo Vetrone,
Guanying Chen,
Eva Hemmer,
José Marqués-Hueso
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.398353
Subject(s) - photoluminescence , materials science , photon upconversion , quantum yield , optoelectronics , phosphor , absorption (acoustics) , quantum dot , particle size , optics , refractive index , scattering , microscale chemistry , luminescence , fluorescence , physics , chemistry , mathematics education , mathematics , composite material
Scattering affects excitation power density, penetration depth and upconversion emission self-absorption, resulting in particle size -dependent modifications of the external photoluminescence quantum yield (ePLQY) and net emission. Micron-size NaYF 4 :Yb 3+ , Er 3+ encapsulated phosphors (∼4.2 µm) showed ePLQY enhancements of >402%, with particle-media refractive index disparity (Δn): 0.4969, and net emission increases of >70%. In sub-micron phosphor encapsulants (∼406 nm), self-absorption limited ePLQY and emission as particle concentration increases, while appearing negligible in nanoparticle dispersions (∼31.8 nm). These dependencies are important for standardising PLQY measurements and optimising UC devices, since the encapsulant can drastically enhance UC emission.