
Critical pattern selection method for full-chip source and mask optimization
Author(s) -
Lufeng Liao,
Sikun Li,
Xiangzhao Wang,
Libin Zhang,
Pengzheng Gao,
Yayi Wei,
Wei Shi
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.396362
Subject(s) - computer science , chip , diffraction , computation , selection (genetic algorithm) , algorithm , node (physics) , optics , artificial intelligence , physics , telecommunications , quantum mechanics
Source and mask optimization (SMO) is one of the most important resolution enhancement techniques for integrated circuit manufacturing in 2X nm technology node and beyond. Nowadays full-chip SMO is alternatively realized by applying SMO to limited number of selected critical patterns instead of to full-chip area, since it is too computational expensive to be apply SMO in full-chip area directly. The critical patterns are selected by a pattern selection method which enables SMO in full-chip application by balancing the performance and computation consumption. A novel diffraction-based pattern selection method has been proposed in this paper. In this method, diffraction-signatures are sufficiently described with widths in eight selected directions. Coverage rules between the diffraction-signatures are specifically designed. Diffraction-signature grouping method and pattern selection strategy are proposed based on the diffraction-signatures and coverage rules. A series of simulations and comparisons performed using ASML's Tachyon software, which is one of the state of the art commercial SMO platforms, verify the validity of the proposed method.