
In-situ dual-channel surface plasmon resonance fiber sensor for temperature-compensated detection of glucose concentration
Author(s) -
Shengnan Wu,
Qingyuan Tan,
Erik Forsberg,
Sien Hu,
Sailing He
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.395524
Subject(s) - surface plasmon resonance , materials science , biosensor , glucose oxidase , fiber optic sensor , polydimethylsiloxane , temperature measurement , optoelectronics , optical fiber , fiber , analytical chemistry (journal) , optics , nanotechnology , nanoparticle , chemistry , chromatography , physics , composite material , quantum mechanics
External temperature variations inevitably affect the accuracy of surface plasmon resonance (SPR) biosensors. To that end, we propose an ultra-compact label-free dual-channel SPR fiber sensor (DSPRFS) that can simultaneously measure the glucose concentration and ambient temperature in real-time. The proposed sensor is based on a unique dual-channel structure fabricated by etching a side-hole fiber (SHF), and has significantly higher spatial sensitivity than traditional SPR biosensors. After coating with silver and zinc oxide films, one channel was filled with polydimethylsiloxane (PDMS) to sense the ambient temperature, and the other channel was immobilized with glucose oxidase (GOx) enzyme for glucose sensing. The proposed sensor is analyzed theoretically, fabricated and characterized. Glucose concentration sensitivity and temperature sensitivity of the manufactured sensor sample were found to be as high as 6.156 nm/mMand -1.604 nm/°C with limits of detection (LOD) of 16.24 µM and 0.06 °C, respectively. The proposed sensor has an extremely compact structure, enables temperature compensation, and is suitable for in-situ monitoring and high-precision sensing of glucose and other biological analytes.