
Exact design of complex amplitude holograms for producing arbitrary scalar fields
Author(s) -
Cameron Johnson,
Jordan Pierce,
Rich Moraski,
Amy E. Turner,
Alice Greenberg,
Will S Parker,
Benjamin McMorran
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.393224
Subject(s) - wavefront , optics , holography , amplitude , physics , diffraction , phase (matter) , scalar (mathematics) , mathematics , geometry , quantum mechanics
Typical methods to holographically encode arbitrary wavefronts assume the hologram medium only applies either phase shifts or amplitude attenuation to the wavefront. In many cases, phase cannot be introduced to the wavefront without also affecting the amplitude. Here we show how to encode an arbitrary wavefront into an off-axis transmission hologram that returns the exact desired arbitrary wavefunction in a diffracted beam for phase-only, amplitude-only, or mixed phase and amplitude holograms with any periodic groove profile. We apply this to design thin holograms for electrons in a TEM, but our results are generally applicable to light and X-ray optics. We employ a phase reconstruction from a series of focal plane images to qualitatively show the accuracy of this method to impart the expected amplitude and phase to a specific diffraction order.