z-logo
open-access-imgOpen Access
Spectral CT imaging method based on blind separation of polychromatic projections with Poisson prior
Author(s) -
Xiaojie Zhao,
Ping Chen,
Jiaotong Wei,
QU Zhao-yan
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.392675
Subject(s) - algorithm , coordinate descent , multispectral image , energy (signal processing) , optics , computer science , mathematics , physics , artificial intelligence , statistics
The linear reconstruction of narrow-energy-width projections can suppress hardening artifacts in conventional computed tomography (CT). We develop a spectral CT blind separation algorithm for obtaining narrow-energy-width projections under a blind scenario where the incident spectra are unknown. The algorithm relies on an X-ray multispectral forward model. Based on the Poisson statistical properties of measurements, a constrained optimization problem is established and solved by a block coordinate descent algorithm that alternates between nonnegative matrix factorization and Gauss-Newton algorithm. Experiments indicate that the decomposed projections conform to the characteristics of narrow-energy-width projections. The new algorithm improves the accuracy of obtaining narrow-energy-width projections.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom