
1645 nm coherent Doppler wind lidar with a single-frequency Er:YAG laser
Author(s) -
Kaixin Wang,
Chunqing Gao,
Lin Zhao,
Mingwei Gao,
Shuai Huang,
ChaoYong Chen
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.392092
Subject(s) - laser , optics , lidar , materials science , pulse repetition frequency , doppler effect , range (aeronautics) , physics , telecommunications , radar , astronomy , computer science , composite material
Solid-state single-frequency lasers around 1.6 µm are ideal sources for coherent Doppler wind lidars (CDWLs). A CDWL system with 1645 nm sing-frequency, injection-seeded Er:YAG ceramic laser is demonstrated. The Er:YAG laser based on an "M-shaped" ring resonator operates at pulse repetition frequencies (PRFs) of 300-1000 Hz at room temperature. The maximum single-frequency output energy is 10.1 mJ with a pulse width of 179 ns at 300 Hz. The 1645 nm Er:YAG laser is first used in a long-range CDWL system, and a line of sight (LOS) wind velocity up to 25 km is detected with 90 m range resolution in 0.5 s observation. To verify the reliability of the measurement results, the relationship between detection range, pulse energy, and accumulated numbers is also demonstrated.