Relative phase effect of nonsequential double ionization of molecules by counter-rotating two-color circularly polarized fields
Author(s) -
Cheng Huang,
Huiling Pang,
Xuefei Huang,
Mingmin Zhong,
Zheng-Mao Wu
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.390281
Subject(s) - physics , electron , atomic physics , double ionization , phase (matter) , ionization , momentum (technical analysis) , optics , relative velocity , relative phase , laser , elliptical polarization , linear polarization , quantum mechanics , ion , finance , economics
Relative phase effect of nonsequential double ionization (NSDI) of aligned molecules by counter-rotating two-color circularly polarized (TCCP) fields is investigated with a three-dimensional classical ensemble model. Numerical results show that NSDI yield in counter-rotating TCCP fields sensitively depends on the relative phase of the two components, which exhibits a sin-like behavior with the period of π/2. NSDI yield achieves its maximum at the relative phase π/8 and minimum at 3π/8. Back analysis indicates the recollision time and the return angle of the electron strongly depend on the relative phase of the two components, which results in the dominant emission direction of the electrons, is different for different relative phases. This indicates that the recollision process can be steered by changing the relative phase of the two components in counter-rotating TCCP laser fields. Meantime, it provides an avenue to obtain information about the recollision time and the return angle in the recollision process from the electron momentum distribution.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom