
Fundamental electro-optic limitations of thin-film lithium niobate microring modulators
Author(s) -
Mehdi N. Bahadori,
Lynford L. Goddard,
Songbin Gong
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.390179
Subject(s) - lithium niobate , resonator , optics , materials science , curvature , optoelectronics , electrode , thin film , waveguide , physics , nanotechnology , mathematics , geometry , quantum mechanics
We investigate the impact of waveguide curvature on the electro-optic efficiency of microring resonators in thin-film X-cut or Y-cut lithium niobate (in-plane extraordinary axis) and derive explicit relations on the response. It is shown that such microring modulators have a fundamental upper bound on their electro-optic performance (∼50% filling factor) which corresponds to a specific arrangement of metal electrodes surrounding the microring and yields nearly identical results for X-cut and Y-cut designs. We further show that this limitation does not exist (i.e., 100% filling factor is possible) with Z-cut microring modulators or can be circumvented (i.e., ∼100% filling factor is possible) in X-cut and Y-cut modulators that use a race-track configuration with segmented electrodes. Comparison of our analytical results with multiphysics simulations and measured electro-optic efficiencies of microring resonators in the literature demonstrates the validity and accuracy of our approach.