Fast calculation of computer-generated hologram of line-drawn objects without FFT
Author(s) -
Takashi Nishitsuji,
Tomoyoshi Shimobaba,
Takashi Kakue,
Tomoyoshi Ito
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.389778
Subject(s) - fast fourier transform , holography , wavefront , optics , computer science , line (geometry) , computer generated holography , computer graphics (images) , holographic display , diffraction , point (geometry) , computational complexity theory , angular spectrum method , object (grammar) , angular resolution (graph drawing) , integral imaging , computer vision , image (mathematics) , algorithm , artificial intelligence , physics , mathematics , geometry , combinatorics
Although holographic display technology is one of the most promising three-dimensional (3D) display technologies for virtual and augmented reality, the enormous computational effort required to produce computer-generated holograms (CGHs) to digitally record and display 3D images presents a significant roadblock to the implementation of this technology. One of the most effective methods to implement fast CGH calculations is a diffraction calculation (e.g., angular spectrum diffraction) based on the fast-Fourier transform (FFT). Unfortunately, the computational complexity increases with increasing CGH resolution, which is what determines the size of a 3D image. Therefore, enormous calculations are still required to display a reasonably sized 3D image, even for a simple 3D image. To address this issue, we propose herein a fast CGH algorithm for 3D objects comprised of line-drawn objects at layers of different depths. An aperture formed from a continuous line at a single depth can be regarded as a series of aligned point sources of light, and the wavefront converges for a sufficiently long line. Thus, a CGH of a line-drawn object can be calculated by synthesizing converged wavefronts along the line. Numerical experiments indicate that, compared with the FFT-based method, the proposed method offers a factor-56 gain in speed for calculating 16-k-resolution CGHs from 3D objects composed of twelve line-drawn objects at different depths.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom