z-logo
open-access-imgOpen Access
Light reflection and transmission in planar lattices of cold atoms
Author(s) -
Sung-Mi Yoo,
Juha Javanainen
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.389570
Subject(s) - physics , bragg's law , lattice (music) , dipole , computation , optical lattice , planar , quantum optics , reflection (computer programming) , ultracold atom , quantum computer , quantum , optics , quantum mechanics , computational physics , diffraction , computer science , algorithm , superfluidity , computer graphics (images) , acoustics , programming language
Manipulation of light using atoms plays a fundamental and important role in emerging technologies such as integrated photonics, information storage, and quantum sensors. Specifically, there have been intense theoretical efforts involving large samples of cold neutral atoms for coherent control of light. Here we present a theoretical scheme that enables efficient computation of collective optical responses of mono- and bi-layer planar square lattices of dense, cold two-level atoms using classical electrodynamics of coupled dipoles in the limit of low laser intensity. The steady-state transmissivity and reflectivity are obtained at a field point far away from the atomic lattices in the regime with no Bragg reflection. While our earlier method was based on exact solution of the electrodynamics for a small-scale lattice, here we calculate the dipole moments assuming that they are the same at all lattice sites, as for an infinite lattice. Atomic lattices with effectively over one hundred times more sites than in our earlier exact computations can then be simulated numerically with fewer computational resources. We have implemented an automatic selection of the number of sites under the given convergence criteria. We compare the numerical results from both computational schemes. We also find similarities and differences of a stack of two atomic lattices from a two-atom sample. Such aspects may be exploited to engineer a stack for potential applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom