High-efficiency GeSn/Ge multiple-quantum-well photodetectors with photon-trapping microstructures operating at 2 µm
Author(s) -
Hao Zhou,
Shengqiang Xu,
Yiding Lin,
YiChiau Huang,
Bongkwon Son,
Qimiao Chen,
Xin Guo,
Kwang Hong Lee,
Simon Chun-Kiat Goh,
Xiao Gong,
Chuan Seng Tan
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.389378
Subject(s) - photodetector , optics , materials science , quantum efficiency , optoelectronics , photon , trapping , germanium , refractive index , physics , silicon , ecology , biology
We introduced photon-trapping microstructures into GeSn-based photodetectors for the first time, and achieved high-efficiency photo detection at 2 µm with a responsivity of 0.11 A/W. The demonstration was realized by a GeSn/Ge multiple-quantum-well (MQW) p-i-n photodiode on a GeOI architecture. Compared with the non-photon-trapping counterparts, the patterning and etching of photon-trapping microstructure can be processed in the same step with mesa structure at no additional cost. A four-fold enhancement of photo response was achieved at 2 µm. Although the incorporation of photo-trapping microstructure degrades the dark current density which increases from 31.5 to 45.2 mA/cm 2 at -1 V, it benefits an improved 3-dB bandwidth of 2.7 GHz at bias voltage at -5 V. The optical performance of GeSn/Ge MQW photon-trapping photodetector manifests its great potential as a candidate for efficient 2 µm communication. Additionally, the underlying GeOI platform enables its feasibility of monolithic integration with other photonic components such as waveguide, modulator and (de)multiplexer for optoelectronic integrated circuits (OEICs) operating at 2 µm.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom