z-logo
open-access-imgOpen Access
High fill-factor miniaturized SPAD arrays with a guard-ring-sharing technique
Author(s) -
Kazuhiro Morimoto,
Edoardo Charbon
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.389216
Subject(s) - jitter , optics , miniaturization , cmos , charge sharing , optoelectronics , physics , materials science , pixel , electronic engineering , engineering , nanotechnology
We present a novel guard-ring-sharing technique to push the limit of SPAD pixel miniaturization, and to demonstrate the operation of SPAD arrays with a 2.2 µm-pitch, the smallest ever reported. Device simulation and preliminary tests suggest that the optimized device design ensures the electrical isolation of SPADs with guard-ring sharing. 4×4 SPAD arrays with two parallel selective readout circuits are designed in 180 nm CMOS technology. SPAD characteristics for the pixel pitch of 2.2, 3, and 4 µm are systematically measured as a function of an active diameter, active-to-active distance, and excess bias. For a 4 µm-pitch, the fill factor is 42.4%, the maximum PDP 33.5%, the median DCR 2.5 cps, the timing jitter 88 ps, and the crosstalk probability is 3.57%, while the afterpulsing probability is 0.21%. Finally, we verified the feasibility of the proposed technique towards compact multi-megapixel 3D-stacked SPAD arrays.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom