z-logo
open-access-imgOpen Access
Fluorescence Scheimpflug LiDAR developed for the three-dimension profiling of plants
Author(s) -
Hongze Lin,
Yao Zhang,
Liang Mei
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.389043
Subject(s) - scheimpflug principle , optics , fluorescence , materials science , lidar , pixel , laser induced fluorescence , chlorophyll fluorescence , fluorescence spectroscopy , laser , remote sensing , physics , geology , cornea
This work proposes a novel fluorescence Scheimpflug LiDAR (SLiDAR) technique based on the Scheimpflug principle for three-dimension (3D) plant profile measurements. A 405 nm laser diode was employed as the excitation light source to generate a light sheet. Both the elastic and inelastic/fluorescence signals from a target object (e.g., plants) can be simultaneously measured by the fluorescence SLiDAR system employing a color image sensor with blue, green and red detection channels. The 3D profile can be obtained from the elastic signal recorded by blue pixels through elevation scanning measurements, while the fluorescence intensity of the target object is mainly acquired by red and green pixels. The normalized fluorescence intensity of the red channel, related to the chlorophyll distribution of the plant, can be utilized for the classification of leaves, branches and trunks. The promising results demonstrated in this work have shown a great potential of employing the fluorescence SLiDAR technique for 3D fluorescence profiling of plants in agriculture and forestry applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom