Robustness of the ePIE algorithm for the complete characterization of femtosecond, extreme ultra-violet pulses
Author(s) -
Mario Murari,
Giacinto D. Lucarelli,
Matteo Lucchini,
M. Nisoli
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.388907
Subject(s) - attosecond , extreme ultraviolet , spectrogram , optics , femtosecond , physics , frequency resolved optical gating , robustness (evolution) , temporal resolution , high harmonic generation , ultrashort pulse , femtosecond pulse shaping , laser , computer science , artificial intelligence , biochemistry , chemistry , gene
Frequency-resolved optical gating for the complete reconstruction of attosecond bursts (FROG-CRAB) is a well-known technique for the complete temporal characterization of ultrashort extreme ultraviolet (XUV) pulses, with durations down to a few tens of attoseconds. Recently, this technique was extended to few-femtosecond XUV pulses, produced by high-order harmonic generation (HHG) in gases, thanks to the implementation of a robust iterative algorithm: the extended ptychographic iterative engine (ePIE). We demonstrate, by using numerical simulations, that the ptychographic reconstruction technique is characterized by an excellent degree of convergence and robustness. We analyse the effects on pulse reconstruction of various experimental imperfections, namely, the jitter of the relative temporal delay between the XUV pulse and a suitably delayed infrared (IR) pulse and the noise of the measured FROG-CRAB spectrograms. We also show that the ePIE approach is particularly suitable for the reconstruction of incomplete FROG-CRAB spectrograms (i.e., spectrograms with a reduced number of measured time delays) and of spectrograms acquired with a reduced spectral resolution, particularly when relatively high-intensity IR pulses are employed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom