Enhancement of quantum correlations using correlation injection scheme in a cascaded four-wave mixing processes
Author(s) -
Hailong Wang,
Kai Zhang,
Zhihao Ni,
Jietai Jing
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.388069
Subject(s) - quantum entanglement , quantum mechanics , physics , quantum correlation , quantum discord , quantum , mixing (physics) , amplitude damping channel , quantum sensor , quantum technology , eigenvalues and eigenvectors , quantum imaging , quantum capacity , quantum network , statistical physics , open quantum system
Quantum correlations and entanglement shared among multiple quantum beams are important for both fundamental science and the development of quantum technologies. The enhancement for them is necessary and important to implement the specific quantum tasks and goals. Here, we report a correlation injection scheme (CIS) which is an effective method to enhance the quantum correlations and entanglement in the symmetrical cascaded four-wave mixing processes, and the properties of quantum correlations and entanglement can be characterized by the values of the degree of intensity-difference squeezing (DS) and the smallest symplectic eigenvalues, respectively. Our results show that the CIS can enhance the quantum correlations and entanglement under certain conditions, while for other conditions it can only decrease the values of the DS and the smallest symplectic eigenvalues to the level of standard quantum limit, respectively. We believe that our scheme is experimentally accessible and will contribute to a deeper understanding of the manipulations of the quantum correlations and entanglement in various quantum networks.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom