z-logo
open-access-imgOpen Access
Polymeric tunable wavelength filter with two-stage cascaded tilted Bragg gratings
Author(s) -
Taehyun Park,
Sung-Moon Kim,
MinCheol Oh
Publication year - 2020
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.387766
Subject(s) - optics , materials science , fiber bragg grating , optical circulator , wavelength division multiplexing , channel spacing , wavelength , bandwidth (computing) , coupled mode theory , optoelectronics , optical filter , bragg's law , grating , refractive index , diffraction , physics , telecommunications , computer science
Wavelength-division multiplexed optical communication systems used in 5G networks require tunable wavelength filters with narrow bandwidth for 100 GHz channel spacing, wide wavelength range to cover 16 channels, and a side mode suppression ratio (SMSR) exceeding 30 dB. To fabricate wavelength filters satisfying these specifications, tunable Bragg grating filters based on polymeric optical waveguides are proposed. The combination of mode-sorting waveguide and tilted Bragg grating enables the extraction of Bragg reflected signals to another path, without using an external circulator. Moreover, the double reflection by the two-stage cascaded structure produces narrower reflection bandwidth, improved SMSR characteristics, and reduced adjacent-channel crosstalk through the suppression of undesired mode coupling. The proposed device exhibits a 20 dB bandwidth of 1.0 nm and SMSR of 35 dB, over the entire wavelength-tuning range.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom