z-logo
open-access-imgOpen Access
Scalable coarse integral holographic video display with integrated spatial image tiling
Author(s) -
Jin Li,
Quinn Smithwick,
Daping Chu
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.386675
Subject(s) - holography , holographic display , parallax , spatial light modulator , computer science , bandwidth (computing) , integral imaging , optics , scanner , image resolution , light field , scalability , computer graphics (images) , field of view , computer vision , artificial intelligence , physics , image (mathematics) , computer network , database
The dynamic Coarse Integral Holography (CIH) display demonstrated previously can scan the low space bandwidth product (SBP) holographic images delivered by a high bandwidth spatial light modulator (SLM) to form a hologram array for angular tiling of the 3D images for a large field-of-view but only a modest size despite the utilization of the full bandwidth of the SLM in use. In this paper, we propose a scalable approach using seamless spatial tiling of the full bandwidth images generated by two high bandwidth SLMs using a resonant scanner and a high performance galvanometric scanner for a scalable CIH display capable of achieving twice of the final image size and doubled horizontal field-of-view (FOV). A proof-of-concept system is demonstrated with integrated full-parallax holographic 3D images. The proposed method has the potential to tile images generated by more than two SLMs for scalable large size and wide FOV holographic displays.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom