Gaussian mixture model-hidden Markov model based nonlinear equalizer for optical fiber transmission
Author(s) -
Fukui Tian,
Qingyi Zhou,
Chuanchuan Yang
Publication year - 2020
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.386476
Subject(s) - computer science , hidden markov model , transmission (telecommunications) , computational complexity theory , nonlinear system , gaussian , algorithm , a priori and a posteriori , electronic engineering , artificial intelligence , telecommunications , engineering , physics , philosophy , epistemology , quantum mechanics
The demand for high speed data transmission has increased rapidly over the past few years, leading to the development of the data center concept. As is known, nonlinear effects in optical fiber transmission systems are becoming significant with the development of transmission speed. Since it is difficult for conventional DSP algorithms to accurately capture these nonlinear distortions, many machine learning-based equalizers have been proposed. However, previous corresponding experiments mainly focused on achieving low BER while the computational complexity is much greater. In this paper, we propose a Gaussian mixture model (GMM)-hidden Markov model (HMM) based nonlinear equalizer, which utilizes the received signals' statistical characteristics as the priori information to reduce the computational complexity. The BER performance of the GMM-HMM based equalizer has been evaluated in a PAM-4 modulated VCSEL-MMF optical interconnect link, which shows an excellent capability of mitigating nonlinear distortions. In addition, the computational complexity of GMM-HMM based equalizer is about 73% lower than that of recurrent neural networks (RNN) based methods with similar BER performance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom