Unidirectional emission of GaN-based eccentric microring laser with low threshold
Author(s) -
Shengnan Zhang,
Yufeng Li,
Peng Hu,
Aixing Li,
Ye Zhang,
Wei Du,
Mengqi Du,
Qiang Li,
Feng Yun
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.386453
Subject(s) - lasing threshold , whispering gallery wave , whispering gallery , optics , laser , materials science , spontaneous emission , optoelectronics , physics
To reduce the threshold and achieve unidirectional lasing emission in a whispering gallery mode microcavity, we propose and demonstrate a GaN-based eccentric microring with an inner hole located off the center. Compared to microdisk with the same outer diameter, the eccentric microring structure exhibits a remarkable reduction of lasing threshold by up to 53%. The introduction of the hole disturbs and eventually suppresses the field distribution of the higher order modes. Laser emission with high unidirectionality with a far-field divergence angle of about 40° has been achieved, meanwhile the Q factor of the whispering gallery modesis remains high as 6388. Finite-difference time-domain numerical simulation is carried out to prove that the far-field profile of the eccentric microring structure can be controlled by the position and the size of the hole. The properties of the whispering gallery mode microcavities are improved greatly through a simple structure and process, which has an important guiding significance to the research and development of the microcavity lasers.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom