z-logo
open-access-imgOpen Access
Spectral µCT with an energy resolving and interpolating pixel detector
Author(s) -
Leon Merten Lohse,
Malte Vassholz,
Mareike Töpperwien,
Thomas G. Jentschke,
A. Bergamaschi,
S. Chiriotti,
Tim Salditt
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.385389
Subject(s) - optics , detector , monochromatic color , spectral imaging , energy (signal processing) , physics , synchrotron radiation , pixel , brightness , spectral resolution , photon , radiation , spectral line , quantum mechanics , astronomy
A main challenge in x-ray µCT with laboratory radiation derives from the broad spectral content, which in contrast to monochromatic synchrotron radiation gives rise to reconstruction artifacts and impedes quantitative reconstruction. Due to the low spectral brightness of these sources, monochromatization is unfavorable and parallel recording of a broad bandpath is practically indispensable. While conventional CT sums up all spectral components into a single detector value, spectral CT discriminates the data in several spectral bins. Here we show that a new generation of charge integrating and interpolating pixel detectors is ideally suited to implement spectral CT with a resolution in the range of 10 µm. We find that the information contained in several photon energy bins largely facilitates automated classification of materials, as demonstrated for of a mouse cochlea. Bones, soft tissues, background and metal implant materials are discriminated automatically. Importantly, this includes taking a better account of phase contrast effects, based on tailoring reconstruction parameters to specific energy bins.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom