z-logo
open-access-imgOpen Access
Genetic algorithm optimization of high order surface etched grating tunable laser array
Author(s) -
Michael B. Wallace,
Sepideh T. Naimi,
Gaurav Jain,
R. McKenna,
Frank Bello,
John F. Donegan
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.383914
Subject(s) - grating , optics , materials science , laser , wafer , wavelength , fabrication , genetic algorithm , optoelectronics , diffraction grating , blazed grating , computer science , physics , medicine , alternative medicine , pathology , machine learning
A genetic algorithm is developed with a view to optimizing surface-etched grating tunable lasers over a large optimization space comprised of several variables. Using this approach, a new iteration of slotted lasers arrays are optimized showing significant improvements over previous designs. Output power, lower grating order, fabrication tolerance and performance at high temperatures are among key parameters improved. The new designs feature a much lower grating order (24-29) than used previously (37). The biggest improvement is a near doubling to slope efficiency to 0.1-0.13 mW/mA, with wavelengths from the array covering the C-band . The designs show a reduced sensitivity to etch depth variations. Designs with linewidths down to 100 kHz are also simulated. This algorithm can be readily applied to different wafer materials to efficiently generate slotted lasers designs at new wavelengths.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom