z-logo
open-access-imgOpen Access
Cross-scale additive direct-writing fabrication of micro/nano lens arrays by electrohydrodynamic jet printing
Author(s) -
Peilin Zhou,
Haibo Yu,
Wuhao Zou,
Ya Zhong,
Xiaoduo Wang,
Zhidong Wang,
Lianqing Liu
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.383863
Subject(s) - electrohydrodynamics , fabrication , materials science , substrate (aquarium) , jet (fluid) , lens (geology) , cantilever , nanotechnology , optics , optoelectronics , electric field , composite material , physics , medicine , oceanography , alternative medicine , pathology , quantum mechanics , thermodynamics , geology
High-quality micro/nanolens arrays (M/NLAs) are becoming irreplaceable components of various compact and miniaturized optical systems and functional devices. There is urgent requirement for a low-cost, high-efficiency, and high-precision technique to manufacture high-quality M/NLAs to meet their diverse and personalized applications. In this paper, we report the one-step maskless fabrication of M/NLAs via electrohydrodynamic jet (E-jet) printing. In order to get the best morphological parameters of M/NLAs, we adopted the stable cone-jet printing mode with optimized parameters instead of the micro dripping mode. The optical parameters of M/NLAs were analyzed and optimized, and they were influenced by the E-jet printing parameters, the wettability of the substrate, and the viscosity of the UV-curable adhesive. Thus, diverse and customized M/NLAs were obtained. Herein, we realized the fabrication of nanolens with a minimum diameter of 120 nm, and NLAs with different parameters were printed on a silicon substrate, a cantilever of atomic force microscopy probe, and single-layer graphene.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom