z-logo
open-access-imgOpen Access
High conversion efficiency of an optical parametric amplifier pumped by 1 kHz Ti:Sapphire laser pulses for tunable high-harmonic generation
Author(s) -
A. Naumov,
D. M. Villeneuve,
Hiromichi Niikura
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.383489
Subject(s) - optics , optical parametric amplifier , energy conversion efficiency , materials science , high harmonic generation , amplifier , femtosecond , harmonics , laser , physics , optical amplifier , optoelectronics , cmos , quantum mechanics , voltage
We report that high-conversion efficiency of nearly 50% has been realized by combining a commercially available Ti:Sapphire femtosecond, 1 kHz laser system and an optical parametric amplifier (OPA). For an input energy of 2.2 mJ/pulse at 1 kHz and 35 fs duration, the total OPA output energy of the signal plus idler pulses is 1.09 mJ/pulse at a signal wavelength of 1310 nm. We found that the output beam profile is almost flat-top due to high gain saturation in the OPA. Using the signal pulse, we generate high-harmonics in gases and measure the velocity map images of photoelectrons ionized from argon gas as a function of the signal wavelength. We observe that in a particular range of the high-harmonic photon energy, a four-fold photoelectron angular structure is observed in the low kinetic energy region. Our results indicate that the output pulses with the high-conversion efficiency OPA and super Gaussian beam profile can be used for experiments requiring generation of tunable high-harmonics in the extreme ultra-violet region.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom