z-logo
open-access-imgOpen Access
Multi-bit dielectric coding metasurface for EM wave manipulation and anomalous reflection
Author(s) -
Yasir Saifullah,
Abu Bakar Waqas,
GuoMin Yang,
Feng Xu
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.383214
Subject(s) - optics , specular reflection , scattering , dielectric , reflection (computer programming) , radar cross section , physics , computer science , optoelectronics , programming language
In this paper, a multi-bit dielectric reflective metasurface is presented for control of electromagnetic (EM) wave scattering and anomalous reflection. The unit cell is designed to act as a 1-, 2-, and 3-bit coding metasurface to attain better control of EM waves. For the 3-bit coding metasurface, the eight digital states have phase responses of 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°. The top layer of the proposed metasurface consists of high permittivity material to realize a high Q factor. The proposed multi-bit coding metasurface can reflect the incident EM wave to the desired angle with more than 93% power efficiency. For radar cross section reduction applications, the discrete water cycle algorithm is utilized to obtain an optimal coding matrix for the unit cell arrangement, leading to better diffusion-like scattering, dispersion of the EM wave in all directions, and hence minimal specular reflection. The simulation and experimental results verify that the proposed metasurface is a suitable candidate for control of EM wave scattering and anomalous reflection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here