z-logo
open-access-imgOpen Access
Modelling laser machining of nickel with spatially shaped three pulse sequences using deep learning
Author(s) -
Michael McDonnell,
James A. GrantJacob,
Yunhui Xie,
Matthew Praeger,
Benita MacKay,
R.W. Eason,
B. Mills
Publication year - 2020
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.381421
Subject(s) - machining , microscale chemistry , femtosecond , laser , optics , artificial neural network , materials science , smoothing , diffraction , computer science , surface roughness , artificial intelligence , computer vision , physics , metallurgy , composite material , mathematics education , mathematics
Femtosecond laser machining is a complex process, owing to the high peak intensities involved. Modelling approaches for the prediction of final sample quality based on photon-atom interactions are therefore challenging to extrapolate up to the microscale and beyond. The problem is compounded when multiple exposures are used to produce a final structure, where surface modifications from previous exposures must be taken into consideration. Neural network approaches allow for the automatic creation of a model that accounts for these challenging processes, without any physical knowledge of the processes being programmed by a specialist. We present such a network for the prediction of surface quality for multi-exposure femtosecond machining on a 5µm electroless nickel layer deposited on copper, where each pulse is uniquely spatially shaped using a spatial light modulator. This neural network modelling method accurately predicts the surface profile after three, sequential, overlapping exposures of dissimilar intensity patterns. It successfully reproduces such effects as the sub-diffraction limit machining feasible with multiple exposures, and the smoothing effect on edge-burr from previous exposures expected in multi-exposure laser machining.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom