z-logo
open-access-imgOpen Access
High-average-power picosecond mid-infrared OP-GaAs OPO
Author(s) -
Qiang Fu,
Lin Xu,
Sijing Liang,
P. C. Shardlow,
D.P. Shepherd,
Shaif-ul Alam,
David J. Richardson
Publication year - 2020
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.380189
Subject(s) - materials science , optical parametric oscillator , optics , picosecond , optoelectronics , laser , signal (programming language) , diode , amplifier , wavelength , infrared , physics , cmos , computer science , programming language
We report a high-average-power mid-infrared picosecond (ps) optical parametric oscillator (OPO) based on orientation-patterned gallium arsenide (OP-GaAs), with wide wavelength tunability. The OP-GaAs OPO is synchronously pumped by a thulium-doped-fiber (TDF) master oscillator power amplifier (MOPA), seeded by a gain-switched laser diode. At a pump power of 35.3 W and a repetition rate of 100 MHz, a maximum OPO total average output power of 9.7 W (signal 5.7 W (0.60 kW peak power), idler 4.0 W (0.42 kW peak power)) is obtained at signal and idler wavelengths of 3093 nm and 5598 nm, and a thermally induced power roll-off is observed. To mitigate the thermal effects, an optical chopper is placed before the OPO to provide burst mode operation and a reduced thermal load. We achieved a linear growth in OPO output power over the full range of available pump powers in this instance confirming thermal effects as the origin of the roll-off observed under continuous pumping. We estimate the maximum peak powers of the signal and idler are estimated to be over 0.79 kW and 0.58 kW, respectively in this instance. A wide mid-infrared wavelength tuning range of 2895-3342 nm (signal) and 4935-6389 nm (idler) is demonstrated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here