
High-energy mid-infrared intrapulse difference-frequency generation with 53% conversion efficiency driven at 3 µm
Author(s) -
Kun Liu,
Houkun Liang,
Shizhen Qu,
Wenkai Li,
Xiao Ping Zou,
Ying Zhang,
Qi Jie Wang
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.037706
Subject(s) - supercontinuum , energy conversion efficiency , optics , materials science , octave (electronics) , quantum efficiency , infrared , pulse (music) , wavelength , optoelectronics , physics , photonic crystal fiber , detector
Intrapulse difference-frequency generation (IPDFG) is a relatively simple technique to produce few-cycle mid-infrared (MIR) radiations. The conversion efficiency of IPDFG could be potentially improved by using the long driving wavelength to reduce the quantum defect. In this paper, we report a high-energy MIR IPDFG source with a record-high conversion efficiency of up to 5.3%, driven by 3 µm, 35 fs, 10 kHz pulses. The IPDFG output has a 5 µJ pulse energy and 50 mW average power. It spans over a spectral range from 6 to 13.2 µm. A 68 fs of IPDFG pulse width is measured, corresponding to 2.1 cycles, centered at 9.7 µm. The high-energy, two-cycle IPDFG pulses are used to produce a 3-octave supercontinuum in a KRS-5 crystal, spanning from 2 to 16 µm, with a 2.4 µJ pulse energy and a 24 mW average power.