z-logo
open-access-imgOpen Access
Uracil-doped DNA thin solid films: a new way to control optical dispersion of DNA film using a RNA constituent
Author(s) -
Hayoung Jeong,
Kyungwan Oh
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.036075
Subject(s) - uracil , thymine , cytosine , guanine , thin film , materials science , dna , nucleobase , spin coating , doping , chemistry , nanotechnology , optoelectronics , nucleotide , biochemistry , gene
Among five nucleobases, adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U), uracil is a key distinctive constituent existing only in ribonucleic acid (RNA). RNA shares the common A, G, and C with deoxyribonucleic acid (DNA) made of A-T, G-C hydrogen bonding. We explored a new attempt to combine uracil (U) with DNA, successfully realizing U-doped DNA thin solid films for the first time. Impacts of uracil on optical properties of the films were thoroughly investigated. The method was based on optimal spin-coating of an aqueous solution of DNA and uracil over silicon or silica substrates. Optical absorption of both aqueous solution and U-doped DNA thin solid films was characterized in a wide spectral range covering UV-visible-IR. Immobilization of uracil within DNA thin solid films was experimentally confirmed by FTIR spectroscopy studies. By using an ellipsometer, we measured the refractive indices of the films and discovered that U-doping was a very effective means to control optical dispersion DNA thin solid film. We further investigated thermo-optic behavior to find impacts of U-doping in DNA films. Detailed thin film processes and optical characterizations are discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here