
Hybrid driving variable-focus optofluidic lens
Author(s) -
Jinhui Wang,
Wei-Pu Tang,
Linyang Li,
Xiao Liang,
Xin Zhou,
QiongHua Wang
Publication year - 2019
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.035203
Subject(s) - zoom lens , focal length , zoom , optics , lens (geology) , electrowetting , polydimethylsiloxane , focus (optics) , simple lens , materials science , optoelectronics , physics , nanotechnology , dielectric
Conventional optofluidic lens usually has only one interface, which means that the zoom range is small, and the ability to correct aberrations is poor. In this paper, we propose a hybrid driving variable-focus optofluidic lens. It has one water-oil interface shifted by an applied voltage and one tunable Polydimethylsiloxane (PDMS) lens deformed by pumping liquid in or out of the cavity. The proposed lens combines the advantages of electrowetting lens and mechanical lens. Therefore, it can provide a large focal length tuning range with good image quality. The shortest positive and negative focal length are ∼6.02 mm and ∼-11.15 mm, respectively. The maximum resolution of our liquid lens can be reached 18 lp/mm. We also designed and fabricated a zoom system using the hybrid driving variable-focus optofluidic lens. In the experiment, the zoom range of the system is 14 mm∼30 mm and the zoom ratio is ∼2.14× without any mechanical moving parts. Its applications for zoom telescope system and zoom microscope and so on are foreseeable.