z-logo
open-access-imgOpen Access
Wavelength–stabilized near–field laser
Author(s) -
V. A. Shchukin,
N. N. Ledentsov,
A. Yu. Egorov
Publication year - 2019
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.032019
Subject(s) - materials science , optics , laser , lasing threshold , optoelectronics , wavelength , distributed bragg reflector , semiconductor laser theory , semiconductor , physics
Surface-trapped electromagnetic waves can be localized at a boundary between a semiconductor distributed Bragg reflector (DBR) and a homogeneous dielectric medium or air. These waves enable a novel class of in-plane-emitting optical devices including edge-emitting lasers, disk microlasers or near-field fiber-coupled lasers. We show that the surface-trapped modes can be controlled by tuning the thickness of a single DBR layer. Diagrams in variables "wavelength - thickness of the control layer" are constructed for both TM and TE optical modes revealing the parameter domains, in which surface-trapped modes exist. The domains contain cusps, in the vicinity of which a surface-trapped optical mode is allowed only in a narrow spectral region, enabling wavelength-stabilized operation of a laser. For a structure designed for lasing at ∼1 µm, the lasing wavelength shifts upon temperature increase at a rate ∼0.08 nm/K. The fraction of the optical power of the surface-trapped mode accumulated in the homogeneous dielectric can reach ∼50%. Thus, such structure is a near-field wavelength-stabilized semiconductor laser. Further, such structure can be applied as a wavelength-stabilized semiconductor optical amplifier adjacent to a dielectric waveguide or an optical fiber, both for integrated photonics and for ultrahigh-brightness laser diodes and diode arrays and stacks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here