
850 nm GaAs/AlGaAs DFB lasers with shallow surface gratings and oxide aperture
Author(s) -
Pengfei Zhang,
Can Liu,
Minwen Xiang,
Xiang Ma,
Gongyuan Zhao,
Qiaoyin Lu,
John F. Donegan,
Weihua Guo
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.031225
Subject(s) - materials science , optics , laser , optoelectronics , grating , laser linewidth , distributed feedback laser , wavelength , physics
We present and experimentally demonstrate a novel oxide-confined ridge-waveguide distributed feedback (DFB) laser with the first-order surface grating using only a single growth step. The metal contacts are laterally offset from the ridge waveguide to inject current thus avoiding unwanted light absorption from the electrodes. The oxide aperture is defined by selective wet oxidation of aluminium-rich material, which confines the injection current from the electrodes to the active layer under the ridge waveguide. This allows that a thin ridge layer can be used with relatively higher refractive index compared to the active layer and thus the grating can be shallowly etched but provides a strong coupling effect. The fabricated 150 µm-long DFB laser exhibited a relatively low threshold current of 8 mA and a side mode suppression ratio (SMSR) up to 50 dB at the injected current of 32 mA around 4 times threshold at 20 °C. Stable single mode operation has been observed for the fabricated DFB laser over the temperature range from 10 to 50 °C. The variation of wavelength with temperature Δλ/ΔT was 0.06 nm/°C. The proposed laser may have advantages combined both DFB lasers and vertical-cavity surface-emitting lasers (VCSELs), such as single mode, stabilized polarization, potentially narrow linewidth and low power consumption. In addition, the laser is regrowth free, thus has advantages of low cost and high reliability.