Open Access
Mechanical switch of photon blockade and photon-induced tunneling
Author(s) -
Cuilu Zhai,
Ran Huang,
Hui Jing,
LeMan Kuang
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.027649
Subject(s) - photon , quantum tunnelling , blockade , physics , quantum , optical switch , optics , optoelectronics , quantum mechanics , chemistry , biochemistry , receptor
We propose how to mechanically control photon blockade (PB) and photon-induced tunneling (PIT) in an optomechanical system. We show that single-photon blockade (1PB) and two-photon blockade (2PB) can emerge by tuning mechanical driving parameters. Moreover, by varying the strength of mechanical driving, PIT can be converted into 1PB or 2PB, or vice versa, with the constant optical frequency. We refer to this effect as PIT-1PB or PIT-2PB switch. In addition, the switch between 1PB and 2PB can also be realized with this strategy. This mechanical engineering of quantum optical effects can be understood from the shifts of energy levels induced by external mechanical pumping. Our results not only pave the way towards devising new schemes for quantum light switch but also, on a more fundamental level, could shed light on the nonclassicality of the few-photon states.