
Spin-orbit coupling controlled near-field propagation and focusing of Bloch surface wave
Author(s) -
Fu Feng,
Shibiao Wei,
Ling Li,
Changjun Min,
Xiaocong Yuan,
Michael Geoffrey Somekh
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.027536
Subject(s) - optics , surface plasmon polariton , surface plasmon , dielectric , antenna (radio) , surface wave , physics , materials science , optoelectronics , plasmon , telecommunications , computer science
Bloch surface wave (BSW) can be considered as the dielectric analogue of surface plasmon polariton (SPP) with less loss since it is sustained at the surface of a truncated dielectric multilayer. As dielectric materials show nearly no ohmic loss, BSW can propagates much farther compared to SPP, and thus is beneficial for planar optical devices. In this paper, we study the spin-orbital interaction between incident beam and BSW. We demonstrate that due to the spin-orbital coupling, the near-field properties of generated BSW can be controlled with a meta-antenna structure. The meta-antenna is composed of two gold nano-antennas oriented at 45° and 135° as a near-eld coupler. By careful design of the meta-antenna, the generated BSW can be guided and focused depending on the chirality of the incident beam. Three examples of meta-antennas are demonstrated for chiral sensitive focusing, directional switching and asymmetric focusing. The proposed method can be applied as a design method for low-loss on-chip photonic devices.